技術・製品概要(やまぐち自動車産業技術・製品紹介特設ウェブサイト)

は同じ、表面似女(でみくり自動半圧米は同じ、表面に打得成フェブリー)								
A:区分	□ 部品	☑ 素材/材料	□ 設備/装置	☆ システム/ソフトウェア				
	☑ その他(軽量化、生産性向上)						
B:技術・製品名								
技術:自動車用PP部品の成形サイクルタイムの短縮と軽量化、製品名:モスハイジ								
C:技術・製品の概要								
自動車部品用PP材料(エラストマー、タルク配合の樹脂組成物)に対し、モスハイジを配合することで、 高い剛性を付与し薄肉化を実現。さらに軽量化と生産性向上に寄与。								
D:企業情報								
企業名:	宇部マテリアルズ株式会社		設立:	1949年9月				
所在地:	山口県宇部市小串1985番地		資本金:	4, 047百万円				
電話番号:	0836-31-2174(ファイ	インマテリアル事業部販売部モスハイジグループ)	従業員数:	721人				
事業内容:	次の各製品の製造、加工及び売買(1)マグネシアクリンカーその他耐火材料(2)石灰その他窯業製品(3)マグネシウム系及びカルシウム系化学工業品(4)電子材料、光学材料(5)ファインセラミックスその他複合材料(6)樹脂用補強材(7)肥料(8)マグネシウム、カルシウム補強用の食品添加物(9)土質安定処理材(10)土木建設用資材、住宅用資材、農芸用資材(11)脱硫剤、脱塩素剤、排水中和剤(12)水質、底質改善剤							
〈〈技術・製品の内容〉〉								

E:セールスポイント

モスハイジ配合により以下の効果が発揮できます。 PP系材の低比重による軽量化

- PP系材の高剛性による薄肉化(成形サイクルタイム短縮)
- PP系材のMFR増加による高流動性化(生産性向上)

F:適用可能な製品/分野

- ・ 自動車内装材用ポリプロピレン
- 樹脂材料の軽量化

G:紹介内容(以下太枠内)

		従来		新技術・新工法				
自動	車内装部品用F	P(タルク20%)系材	自動	自動車内装部品用PP(モスハイジ)系材				
P	Eスハイジ : な PP : 70 Eラストマー: 10 Iルク : 20	% %	F	(組成) モスハイジ: 7% (モスハイジ+7%) PP : 76% エラストマー: 10% タルク : 7% (タルク-13%)				
FI	:重 : 1.05 M : 2,400 M FR : 8.7 g/1		F	(物性) 比重 : 1.00 (低比重) FM : 2,600 MPa (高剛性) MFR : 17.7 g/10min (高流動性)				
(形状) 厚 0.30cm × 縦 10cm × 横 100cm = 体積 300 cm³ 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 厚 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (形状) 原 0.29cm × 縦 10cm × 横 100cm = 体積 290 cm³ / (N to								
体積 300 cm ³ ×比重 1.05 → 重量 315 g 体積 290 cm ³ ×比重 1.00 → 重量 290 g (低比重、高剛性による薄肉軽量化)								
提案の狙い 問題点 (課題) と対応方法 □ 原価低減 □ 品質/性能向上 ・ モスハイジは分解開始温度が280℃の為、 □ 質量低減 □ 安全/環境対策 PPへの配合する際の設定温度にご注意ください □ 生産 (作業) 性向上 □ その他 ()								
開発進度	開発進度 (2021 年 12 月 現在) パテント有無							
□ アイデア段階 □ 試作/実験段階 □ 開発完了段階 □ 製品化完了段階 有り								
従来との	項目	コスト	質量	生産/作業性	その他(リサイクル)			
比較	数値割合	低減	8%軽量化	生産性 向上	可能			